Weighted quality estimates in machine learning
نویسندگان
چکیده
MOTIVATION Machine learning methods such as neural networks, support vector machines, and other classification and regression methods rely on iterative optimization of the model quality in the space of the parameters of the method. Model quality measures (accuracies, correlations, etc.) are frequently overly optimistic because the training sets are dominated by particular families and subfamilies. To overcome the bias, the dataset is usually reduced by filtering out closely related objects. However, such filtering uses fixed similarity thresholds and ignores a part of the training information. RESULTS We suggested a novel approach to calculate prediction model quality based on assigning to each data point inverse density weights derived from the postulated distance metric. We demonstrated that our new weighted measures estimate the model generalization better and are consistent with the machine learning theory. The Vapnik-Chervonenkis theorem was reformulated and applied to derive the space-uniform error estimates. Two examples were used to illustrate the advantages of the inverse density weighting. First, we demonstrated on a set with a built-in bias that the unweighted cross-validation procedure leads to an overly optimistic quality estimate, while the density-weighted quality estimates are more realistic. Second, an analytical equation for weighted quality estimates was used to derive an SVM model for signal peptide prediction using a full set of known signal peptides, instead of the usual filtered subset.
منابع مشابه
Machine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملEssential norm estimates of generalized weighted composition operators into weighted type spaces
Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...
متن کاملzoning of flood hazard in Nowshahr city using machine learning models
The aim of this study is to predict and model flood hazard in the city of Nowshahr, Mazandaran province using machine learning models. The criteria and indicators affecting flood hazard were identified based on the review of resources, and then the indicators were converted into rasters in ArcGIS environment, and finally standardized by fuzzy method for use in the models. K-nearest neighbor ...
متن کاملHypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method
Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...
متن کاملExploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach
Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 22 21 شماره
صفحات -
تاریخ انتشار 2006